Article ID Journal Published Year Pages File Type
8468388 Developmental Biology 2007 10 Pages PDF
Abstract
The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a Gs G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, Gs is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-Gs signaling, we examined the effect of LH on the localization of Gαs. Gs activation in response to stimulation of an exogenously expressed β2-adrenergic receptor causes Gαs to move from the oocyte plasma membrane into the cytoplasm, whereas Gs inactivation in response to inhibition of the β2-adrenergic receptor causes Gαs to move back to the plasma membrane. However, LH does not cause a change in Gαs localization, indicating that LH does not act by terminating receptor-Gs signaling.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,