Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8470408 | Fungal Genetics and Biology | 2018 | 9 Pages |
Abstract
Mitogen-activated protein (MAP) kinase Slt2 is a key player in the cell-wall integrity pathway of budding yeast. In this study, we functionally characterized Slt2 orthologs AoSlt2 and MhSlt2 from the nematode-trapping fungi Arthrobotrys oligospora and Monacrosporium haptotylum, respectively. We found that disruption of AoSlt2 and MhSlt2 led to reduced mycelial growth, increased sensitivity to environmental stresses such as sodium dodecyl sulfate, Congo red, and H2O2, and an inability to produce conidia and nematode-trapping structures. Real-time polymerase chain reaction-based analyses showed that the transcription of sporulation-related (AbaA, Sep2, and MedA) and cell wall synthesis-related (Chs, Glu, and Gfpa) genes was down-regulated in the mutants compared with the wild-type strains. Moreover, the mutant strains showed reduced extracellular proteolytic activity and decreased transcription of three homologous serine protease-encoding genes. These results show for the first time that MAP kinase Slt2 orthologs play similar roles in regulating mycelial growth, conidiation, trap formation, stress resistance, and pathogenicity in the divergent nematode-trapping fungal species A. oligospora and M. haptotylum.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Zhengyi Zhen, Xinjing Xing, Meihua Xie, Le Yang, Xuewei Yang, Yaqing Zheng, Yuanli Chen, Ni Ma, Qing Li, Ke-Qin Zhang, Jinkui Yang,