Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8470463 | Fungal Genetics and Biology | 2018 | 5 Pages |
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20â¯years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Norio Takeshita,