Article ID Journal Published Year Pages File Type
8470787 Fungal Genetics and Biology 2015 7 Pages PDF
Abstract
For pathogens, the ability to acquire available nutrients in a host is a key to their survival and replication. Entomopathogenic fungi of the genus Metarhizium secrete trehalase, which enables them to use trehalose, the predominant sugar in insects. Here, the roles of the acid trehalase gene (ATM1) in the in vivo growth and virulence of Metarhizium acridum were investigated. Phenotypic analysis showed that disruption of ATM1 severely reduced fungal growth on exogenous trehalose as the sole carbon source. Bioassays showed that ATM1 disruption impaired the virulence of M. acridum against the host insect Locusta migratoria. The ATM1-disruption strain (ΔATM1) grown more slowly than the wild-type strain (WT) and complemented transformant (CP) in locust blood, which was consistent with the activity of acid trehalase in the hemolymph of infected locusts. Correspondingly, the trehalose concentration in locusts infected by ΔATM1 was significantly higher than in those infected by WT or CP. Thus, ATM1 disruption led to a significant reduction in virulence by adversely affecting the fungal growth in insect hemolymph, which resulted from the inability of the mutant strain to use trehalose.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,