Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8470845 | Fungal Genetics and Biology | 2014 | 10 Pages |
Abstract
Members of α-1,2-mannosyltransferase (Ktr) family are required for protein O-mannosylation for the elongation of Ser/Thr mannose residues in yeasts but functionally unknown in most filamentous fungi. Here we characterized the functions of the Ktr orthologues Ktr1, Ktr4 and Kre2/Mnt1 in Beauveria bassiana, a filamentous enotmopathogen, and found that they were positive, but differential, mediators of many biological traits. Inactivation of Ktr4 and Kre2 resulted in 92% reduction of conidial yield on a standard medium and growth defects on substrates with altered carbon or nitrogen sources and availability, accompanied with reduced conidial size and complexity. This contrasts to the dispensability of Ktr1 for fungal growth and conidiation. More cell wall damage occurred in Îktr4 and Îkre2 than in Îktr1, including altered contents of the cell wall components mannoproteins, α-glucans and chitin, more carbohydrate epitopes changed on conidial surfaces, much lower conidial hydrophobicity, and thinner cell walls. Consequently, Îktr4 and Îkre2 became more sensitive to oxidation and cell wall perturbation than Îktr1 during colony growth or conidial germination despite less difference in their sensitivities to two osmotic agents. Conidial thermotolerance, UV-B resistance and virulence were all lowered greatly in Îktr4 and Îkre2 but only the thermotolerance decreased in Îktr1. All the phenotypical changes were well restored to wild-type levels by the complementation of each target gene. Our results indicate that Ktr4 and Kre2 contribute more to the biocontrol potential of B. bassiana than Ktr1 although all of them are significant contributors.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Juan-Juan Wang, Lei Qiu, Qing Cai, Sheng-Hua Ying, Ming-Guang Feng,