Article ID Journal Published Year Pages File Type
8470863 Fungal Genetics and Biology 2014 12 Pages PDF
Abstract
cis-Prenyltransferase is the first enzyme of the mevalonate pathway committed to the biosynthesis of dolichol in eukaryotes. The RER2 gene encoding cis-prenyltransferase (Rer2p) in the human fungal pathogen Candida albicans was characterized. In addition, the ORF19.5236 encoding the second cis-prenyltransferase, which putatively is responsible for the synthesis of longer polyisoprenoids chains, was identified. When cultivated under repressive conditions, the conditional mutant strain expressing the RER2 gene from the regulatable MET3 promoter contained only 4% of cis-prenyltransferase activity and markedly diminished amounts of dolichols, as compared to the wild-type strain. Moreover, transcriptomal analyses revealed changes in the expression of 300 genes, mainly involved in transport, response to stress, filamentous growth and organelle organization. Growth of the conditional strain was blocked completely at 37 °C. The strain was hypersensitive to a wide range of inhibitors, which suggested glycosylation defects and compromised cell wall integrity. Moreover, the rer2 conditional mutant grown in the repressive conditions, unlike the same strain in the absence of repressor, failed to form hyphae. The results indicate that dolichols are essential not only for protein glycosylation and cell wall integrity but also for growth and development of C. albicans.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,