Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8473435 | Journal of Molecular and Cellular Cardiology | 2018 | 46 Pages |
Abstract
Intermittent hypoxia (IH) has been shown to exert cardioprotective effects against ischemia/reperfusion (I/R) injury through the preservation of ion homeostasis. I/R dramatically elevated cytosolic Zn2+ and caused cardiomyocyte death. However, the role of IH exposure in the relationship between Zn2+ regulation and cardioprotection is still unclear. The aim of the present study was to study whether IH exposure could help in intracellular Zn2+ regulation, hence contributing to cardioprotection against I/R injury. Adult rat cardiomyocytes were exposed to IH (5% O2, 5% CO2 and balanced N2) for 30â¯min followed by 30â¯min of normoxia (21% O2, 5% CO2 and balanced N2). Changes in intracellular Zn2+ concentration were determined using a Zn2+-specific fluorescent dye, FluoZin-3 or RhodZin-3. Fluorescence was monitored under an inverted fluorescent or confocal microscope. The results demonstrated that I/R or 2,2â²-dithiodipyridine (DTDP), a reactive disulphide compound, induced Zn2+ release from metallothioneins (MTs), subsequently causing cytosolic Zn2+ overload, which in turn increased intracellular Zn2+ entry into the mitochondria via a Ca2+ uniporter, hence inducing mitochondrial membrane potential loss, and eventually led to cell death. However, the cytosolic Zn2+ overload and cell death caused by I/R or DTDP was significantly reduced by treatment of cardiomyocytes with IH. The findings from this study suggest that IH might exert its cardioprotective effect through reducing the I/R-induced cytosolic Zn2+ overload and cell death in cardiomyocytes.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Chih-Feng Lien, Wen-Sen Lee, I-Chieh Wang, Tsung-I Chen, Tzu-Lin Chen, Kun-Ta Yang,