Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8473500 | Journal of Molecular and Cellular Cardiology | 2018 | 10 Pages |
Abstract
FAT10, a member of the ubiquitin-like-modifier family of proteins, plays a cardioprotective role in response to hypoxic/ischemic injury. Caveolin-3 (Cav-3), a muscle-specific caveolin family member, is involved in cardiomyocyte apoptosis. However, the link between FAT10 and Cav-3 in ischemic cardiomyocytes is unclear. In the present study, we found that both FAT10 and Cav-3 were upregulated in ischemic myocardial tissues and in hypoxic cardiomyocytes. Furthermore, our results demonstrated that FAT10 inhibits hypoxia-induced cardiomyocyte apoptosis by increasing Cav-3 expression. Importantly, following myocardial infarction, knockout of FAT10 aggravated cardiac dysfunction and increased cardiomyocyte apoptosis by reducing Cav-3 expression. Additionally, Cav-3 was degraded by the ubiquitin-proteasome system (UPS) in cardiomyocytes. Mechanistically, we found that FAT10 stabilizes Cav-3 expression by inhibiting ubiquitination-mediated degradation in cardiomyocytes. Together, these findings revealed a novel role of FAT10 in protection against ischemia-induced injury via stabilization of Cav-3, providing evidence that the FAT10/Cav-3 axis may be a potential therapeutic target for patients with ischemic heart conditions.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Qiongqiong Zhou, Xiaogang Peng, Xiao Liu, Leifeng Chen, Qinmei Xiong, Yang Shen, Jinyan Xie, Zhenyan Xu, Lin Huang, Jinzhu Hu, Rong Wan, Kui Hong,