Article ID Journal Published Year Pages File Type
8473522 Journal of Molecular and Cellular Cardiology 2018 51 Pages PDF
Abstract
The capacity of thioredoxin 1 and glutaredoxin 1 to reduce intra-protein disulfide bridges is weakened in Rap1 deficient mice, resulting in hyper-activation of NADPH oxidase and greater reactive oxygen species generation. The high oxidative stress in Rap1 deficient mice is implicated with greater oxidative breakdown of NO, explaining the blunted acetylcholine-mediated relaxations in this animal. These findings imply that Rap1 plays an unanticipated role in regulating the fate of NO (a pivotal determinant of vascular homeostasis) and thus identify a new physiological importance of the telomere-associated protein.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,