Article ID Journal Published Year Pages File Type
8474849 Journal of Molecular and Cellular Cardiology 2014 10 Pages PDF
Abstract
Sarcomeres are the basic contractile units of cardiac myocytes. Recent studies demonstrated remodeling of sarcomeric proteins in several diseases, including genetic defects and heart failure. Here we investigated remodeling of sarcomeric α-actinin in two models of heart failure, synchronous (SHF) and dyssynchronous heart failure (DHF), as well as a model of cardiac resynchronization therapy (CRT). We applied three-dimensional confocal microscopy and quantitative methods of image analysis to study isolated cells from our animal models. 3D Fourier analysis revealed a decrease of the spatial regularity of the α-actinin distribution in both SHF and DHF versus control cells. The spatial regularity of α-actinin in DHF cells was reduced when compared with SHF cells. The spatial regularity of α-actinin was partially restored after CRT. We found longitudinal depositions of α-actinin in SHF, DHF and CRT cells. These depositions spanned adjacent Z-disks and exhibited a lower density of α-actinin than in the Z-disk. Differences in the occurrence of depositions between the SHF, CRT and DHF models versus control were significant. Also, CRT cells exhibited a higher occurrence of depositions versus SHF, but not DHF cells. Other sarcomeric proteins did not accumulate in the depositions to the same extent as α-actinin. We did not find differences in the expression of α-actinin protein and its encoding gene in our animal models. In summary, our studies indicate that HF is associated with two different types of remodeling of α-actinin and only one of those was reversed after CRT. We suggest that these results can guide us to an understanding of remodeling of structures and function associated with sarcomeres.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , ,