Article ID Journal Published Year Pages File Type
8477114 Molecular and Cellular Endocrinology 2015 9 Pages PDF
Abstract
Osterix is an essential transcription factor for osteoblast differentiation and bone formation. The mechanism of regulation of Osterix by post-translational modification remains unknown. Peptidyl-prolyl isomerase 1 (Pin1) catalyzes the isomerization of pSer/Thr-Pro bonds and induces a conformational change in its substrates, subsequently regulating diverse cellular processes. In this study, we demonstrated that Pin1 interacts with Osterix and influences its protein stability and transcriptional activity. This regulation is likely due to the suppression of poly-ubiquitination-mediated proteasomal degradation of Osterix. Collectively, our data demonstrate that Pin1 is a novel regulator of Osterix and may play an essential role in the regulation of osteogenic differentiation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,