Article ID Journal Published Year Pages File Type
8477190 Molecular and Cellular Endocrinology 2014 16 Pages PDF
Abstract
Extended residual persistence of the pesticide dichlorodiphenyltrichloroethane (DDT) raises concerns about its long-term neurotoxic effects. Little is known, however, about DDT toxicity during the early stages of neural development. This study demonstrated that DDT-induced apoptosis of mouse embryonic neuronal cells is a caspase-9-, caspase-3-, and GSK-3β-dependent process, which involves p,p'-DDT-specific impairment of classical ERs. It also provided evidence for DDT-isomer-nonspecific alterations of AhR- and GPR30-mediated intracellular signaling, including changes in the levels of the receptor and receptor-regulated mRNAs, and also changes in the protein levels of the receptors. DDT-induced stimulation of AhR-signaling and reduction of GPR30-signaling were verified using selective ligands and specific siRNAs. Co-localization of the receptors was demonstrated with confocal microscopy, and the presence of functional GPR30 was detected by electrophysiology. This study demonstrates that stimulation of AhR-signaling and impairment of GPR30-signaling play important roles in the propagation of DDT-induced apoptosis during the early stages of neural development.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , , , , , , ,