Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8477281 | Molecular and Cellular Endocrinology | 2013 | 9 Pages |
Abstract
How Retinoid X receptors (RXR) and thyroid hormone receptors (TR) interact on negative TREs and whether RXR subtype specificity is determinant in such regulations is unknown. In a set of functional studies, we analyzed RXR subtype effects in T3-dependent repression of hypothalamic thyrotropin-releasing hormone (Trh). Two-hybrid screening of a hypothalamic paraventricular nucleus cDNA bank revealed specific, T3-dependent interaction of TRs with RXRβ. In vivo chromatin immuno-precipitation showed recruitment of RXRs to the TRE-site 4 region of the Trh promoter in the absence of T3. In vivo overexpression of RXRα in the mouse hypothalamus heightened T3-independent Trh transcription, whereas RXRβ overexpression abrogated this activity. Loss of function of RXRα and β by shRNAs induced inverse regulations. Thus, RXRα and RXRβ display specific roles in modulating T3-dependent regulation of Trh. These results provide insight into the actions of these different TR heterodimerization partners within the context of a negatively regulated gene.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Stéphanie Decherf, Isabelle Seugnet, Nathalie Becker, Barbara A. Demeneix, Marie-Stéphanie Clerget-Froidevaux,