Article ID Journal Published Year Pages File Type
8477412 Molecular and Cellular Endocrinology 2013 10 Pages PDF
Abstract
Estrogen and dopamine are major opposing regulators of the endocrine functions of pituitary lactotrophs. Dopamine inhibits estrogen-induced changes in the synthesis and secretion of prolactin, and lactotroph proliferation. We studied the mechanism of the inhibitory effects of dopaminergic stimulation on estrogen-induced functional changes of rat lactotrophs in primary culture. The dopaminergic agonist, bromocriptine (BC), suppressed 17β-estradiol-stimulated lactotroph proliferation, prolactin promoter activity, and mRNA expression of some estrogen-responsive genes. In lactotroph-enriched pituitary cells, BC treatment inhibited the estrogen response element (ERE) DNA sequence-mediated estrogen receptor (ER) transcriptional activity. Using a lactotroph-specific ERE transcriptional assay, we found that BC inhibition of the ERE-mediated ER transcriptional activity partly involved D2 dopamine receptor-mediated, pertussis toxin-sensitive G protein-coupled, cAMP/protein kinase A-dependent signaling. BC treatment had no effect on the cellular concentration of ERα or its phosphorylation status at Ser-118. Similar transcriptional inhibition by BC was also found in GH4ZR7 cells, a D2 dopamine receptor-expressing somatomammotrophic cell line. These results suggest that activation of the D2 dopamine receptors inhibits estrogen-dependent lactotroph functions in part via attenuation of ERE-mediated ER transactivation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,