Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8478230 | Molecular and Cellular Endocrinology | 2007 | 9 Pages |
Abstract
Human FSH exists as two major glycoforms designated, tetra-glycosylated and di-glycosylated hFSH. The former possesses both α- and β-subunit carbohydrates while the latter possesses only α-subunit carbohydrate. Western blotting differentiated the glycosylated, 24,000 Mr hFSHβ band from the non-glycosylated 21,000 Mr FSHβ band. Postmenopausal urinary hFSH preparations possessed 75-95% 24,000 Mr hFSHβ, while pituitary hFSH immunopurified from 21- to 43-year-old females and 21-43-year-old males possessed only 35-40% 24,000 Mr hFSHβ. The pituitary hFSH from a postmenopausal woman on estrogen replacement was 75% 21,000 Mr hFSHβ. Other immunopurified postmenopausal pituitary hFSH preparations possessed 50-60% 21,000 Mr hFSHβ. Gel filtration removed predominantly 21,000 Mr free hFSHβ and reduced its abundance to 13-22% in postmenopausal pituitary hFSH heterodimer preparations. A major regulatory mechanism for FSH glycosylation involves control of β-subunit N-glycosylation, possibly by inhibition of oligosaccharyl transferase. Two primate species exhibited the same all-or-none pattern of pituitary FSHβ glycosylation.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
George R. Bousfield, Vladimir Y. Butnev, Wendy J. Walton, Van T. Nguyen, Jennifer Huneidi, Vinod Singh, V.S. Kumar Kolli, David J. Harvey, Naomi E. Rance,