Article ID Journal Published Year Pages File Type
8480367 Seminars in Cell & Developmental Biology 2015 37 Pages PDF
Abstract
Exposure of developing male germ cells to environmental insults has been linked to adverse effects in the offspring. One mechanism by which germ cell defects may be passed intergenerationally is through perturbations in the epigenome at the level(s) of DNA methylation, histone post-translational modifications and/or small non-coding RNAs. Epigenetic programs are particularly dynamic in germ cells undergoing erasure, re-establishment and maintenance of patterns, events potentially susceptible to prenatal and/or postnatal exposures. In this review, we focus on the epigenetic events occurring at each phase of male germ cell development including the prenatal period covering primordial germ cells and prospermatogonia and the postnatal period covering mitotic spermatogonia, meiotic spermatocytes and post-meiotic haploid spermatids and spermatozoa. Strong barriers to the passage of abnormal epigenetic patterns between generations are erected at two times of genome-wide epigenomic reprogramming, first in the germline in primordial germ cells and second, post-fertilization, during preimplantation development. Evidence from high resolution profiling studies that not all epigenetic marks are erased during germ cell and embryonic reprogramming provides a potential explanation for the intergenerational inheritance of abnormal epigenetic marks that may affect offspring health.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,