Article ID Journal Published Year Pages File Type
8485477 Vaccine 2018 8 Pages PDF
Abstract
Gonorrhea, an important sexually transmitted disease, is becoming a growing public health problem around the globe. Vaccination is considered the best long-term approach for control of infection. In this study, we designed a novel Neisseria gonorrhoeae (N. gonorrhoeae) DNA vaccine delivered by bacterial ghosts and characterized its immune responses in vitro and in vivo. Our results demonstrate that bacterial ghosts greatly promoted BMDCs maturation and activation. Bacterial ghosts loaded with N. gonorrhoeae DNA vaccine were efficiently taken up by mouse macrophage RAW264.7 cells. Furthermore, oral immunization with the ghost vaccine candidate elicited greater CD4+ and CD8+ T cell responses and induced higher IgG responses than N. gonorrhoeae DNA vaccine alone. In addition, mice immunized with the vaccine candidate responded with a significant rise in bactericidal antibody titer. These results suggest that bacterial ghosts may function as a vaccine adjuvant by promoting BMDCs maturation, which in turn enhances the immune responses to the vaccine antigens. This study also highlights the potential of using bacterial ghosts as antigen delivery system in the development of an efficacious gonorrhea vaccine.
Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , ,