Article ID Journal Published Year Pages File Type
848626 Optik - International Journal for Light and Electron Optics 2014 5 Pages PDF
Abstract

Visual saliency has recently attracted lots of research interest in the computer vision community. In this paper, we propose a novel computational model for bottom-up saliency detection based on manifold learning. A typical graph-based manifold learning algorithm, namely the diffusion maps, is adopted for establishing our saliency model. In the proposed method, firstly, a graph is constructed using low-level image features. Then, the diffusion maps algorithm is performed to learn the diffusion distances at different time, which are utilized to derive the saliency measure. Compared to existing saliency models, our method has the advantage of being able to capture the intrinsic nonlinear structures in the original feature space. Experimental results on publicly available data demonstrate that our method outperforms the state-of-the-art saliency models, both qualitatively and quantitatively.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,