Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8486791 | Vaccine | 2011 | 11 Pages |
Abstract
An optimal cancer vaccine should be able to induce highly potent, long-lasting, tumor-specific responses in the majority of the cancer patient population. One approach for achieving this is to use synthetic peptide vaccines derived from widely expressed tumor-associated antigens, that promiscuously bind multiple MHC class I and class II alleles. MUC1-SP-L (ImMucin, VXL100) is a 21mer peptide encoding the complete signal peptide domain of MUC1, a tumor-associated antigen expressed by over 90% of solid and non-solid tumors. MUC1-SP-L was predicted in silico to bind various MHC class I and MHC class II alleles, covering the majority of the Caucasian population. PBLs obtained from 13 naïve donors all proliferated, with a Stimulation Index (SI â¥Â 2), to the MUC1-SP-L peptide, producing mixed CD4+ and CD8+ responses. Similar results were manifested by MUC1-SP-L in PBLs derived from 9 of 10 cancer patients with MUC1 positive tumors. CD4+ and CD8+ T cell populations exhibited CD45RO memory markers and secreted IFN-gamma and IL-2 following stimulation with MUC1-SP-L. These T cells also exhibited proliferation to the MUC1-SP-L inner 9mer epitopes and cytotoxicity against tumor cell lines expressing MUC1 and a concordant MHC class I allele. Cytotoxicity to MUC1-expressing human and murine tumors was shown also in T cells obtained from HLA-A2 transgenic mice and BALB/c syngeneic mice immunized with the MUC1-SP-L and GM-CSF. In an immunotherapy model, BALB/c mice inoculated with metastatic MUC1 transfected murine DA3 mammary tumor cells, exhibited significantly prolonged survival following vaccination with MUC1-SP-L. Our results indicate superior immunological and anti-tumor properties of MUC1-SP-L compared to previously published MUC1-derived epitopes.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Riva Kovjazin, Ilan Volovitz, Yulia Kundel, Eli Rosenbaum, Gal Medalia, Galit Horn, Nechama I. Smorodinsky, Baruch Brenner, Lior Carmon,