Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8486809 | Vaccine | 2011 | 7 Pages |
Abstract
Rv3097c of Mycobacterium tuberculosis encoding lipase (LipY) was overexpressed in Mycobacterium bovis BCG. Efficacy of recombinant BCG to protect against infection of M. tuberculosis was evaluated in mice. Whereas the parent BCG vaccine protected the mice against infection, recombinant BCG overexpressing LipY offered no protection as judged by viable counts of tubercule bacilli in lungs, weight of infected mice, pathology of lungs and survival of challenged mice. Downregulation of overexpression of LipY by antisense approach considerably restored protection of infected mice as observed with parent BCG vaccine. Overexpression of lipase in BCG caused extensive hydrolysis of triacylglycerol (TG) as identified by TLC, HPLC and NMR spectroscopy. A good correlation could be inferred between hydrolysis of TG and decrease in Th1 secreted IFNγ and IL-2, proinflammatory cytokines and survival of infected mice. Mice immunized with purified LipY antigen were protected and both proinflammatory and Th1 specific cytokines were augmented. TG was found to be a poor vaccine providing no protection, which appears to be due to attenuation of Th1 and proinflammatory immune responses. In conclusion this is the first experimental report to show that immunogenicity of BCG vaccine was impaired by LipY-induced hydrolysis of specific lipids leading to suppression of host immune responses.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Vipul K. Singh, Vikas Srivastava, Vinayak Singh, Neeraj Rastogi, Raja Roy, Arun K. Shaw, Anil K. Dwivedi, Ranjana Srivastava, Brahm S. Srivastava,