Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
848831 | Optik - International Journal for Light and Electron Optics | 2014 | 4 Pages |
A wavelength-division-multiplexing system with high compactness and extremely simple structures is designed and analyzed theoretically for optical communication wavelengths. The structure consists of a self-collimation region, a coupler, a coupling section, and two arbitrarily bent periodic dielectric waveguides (PDWGs). Operation principle of the devices is based on self-collimation and directional coupling mechanism. The equal-frequency contours (EFCs) are nearly flat from 0.17–0.22 (2πc/a), thus the self-collimation region acts as a multiplexer. Operation principle of the demultiplexer is based on directional coupling in two parallel periodic dielectric waveguides. The device performances have been evaluated by the finite-difference time-domain simulations coupled with perfectly matched layer (PML) boundary conditions.