Article ID Journal Published Year Pages File Type
848889 Optik - International Journal for Light and Electron Optics 2014 4 Pages PDF
Abstract

High-dielectric constant multilayer coatings are commonly used on optics to increase the laser damage resistance of optics. In this work, the three-dimensional finite-difference time-domain is improved to simulate the electric field intensity distribution in the silica–hafnia multilayer coatings on fused silica subsurface with lateral crack. Results reveal that as the substrate is defect-free, the largest intensification is at the surface layer, especially in the hafnia layer. As the lateral crack appears on the subsurface of fused silica, the intensified sites are mainly located at distorted coatings layers. Dependences of peak LIEF on crack's parameters are detailed investigated. Results show that laser intensification is more sensitive to its width, and the modulation of lateral defect with silica–hafnia multilayer is greater than nodular defect as its width larger than 5λ.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,