Article ID Journal Published Year Pages File Type
848915 Optik - International Journal for Light and Electron Optics 2014 4 Pages PDF
Abstract

Applying nonequilibrium Green's function formalism in combination with the first-principles density functional theory, we investigate the electronic transport properties of optical molecular switch based on the fulgide molecule with two different single-walled carbon nanotube (SWCNT) electrodes. The molecule that comprises the switch can convert between E isomer and C isomer by ultraviolet or visible irradiation. Theoretical results show that these two isomers exhibit very different conductance properties both in armchair and zigzag junction, which can realize the on and off states of the molecular switch. Meantime, the chirality of the SWCNT electrodes strongly affects the switching characteristics of the molecular junctions, which is useful for the design of functional molecular devices.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,