Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
849500 | Optik - International Journal for Light and Electron Optics | 2014 | 8 Pages |
For single sample face recognition, there are limited training samples, so the traditional face recognition methods are not applicable to this problem. In this paper we propose to combine two methods to produce virtual face images for single sample face recognition. We firstly use a symmetry transform to produce symmetrical face images. We secondly use the linear combination of two samples to generate virtual samples. As a result, we convert the special single sample problem into a non-single sample problem. We then use the 2DPCA method to extract features from the samples and use the nearest neighbor classifier to perform classification. Experimental results show that the proposed method can effectively improve the recognition rate of single sample face recognition.