Article ID Journal Published Year Pages File Type
851103 Optik - International Journal for Light and Electron Optics 2009 4 Pages PDF
Abstract
In this paper, the results of numerical analysis are demonstrated for sech pulse (soliton) propagation in a birefringent optical fiber using computer modeling and simulation. Here, the initial pulse is polarized linearly and guided into the fiber at an angle of 45° to its polarization axes. The birefringence-induced time delay of 200 and 440 ps between X and Y polarization components has been reported at a fiber length of 631.72 km (10 soliton periods) by considering linear and nonlinear regimes, respectively. The Kerr nonlinearity, which stabilizes solitons against spreading due to GVD, also stabilizes them against splitting due to birefringence. A similar fact is true for the birefringent walk-off. Above a certain soliton order (Nth), the evolution scenario is qualitatively different and two orthogonally polarized components of the soliton move with a common group velocity despite their different modal indices or polarization mode dispersion (PMD) at a fiber length of 631.72 km (10 soliton periods) and 1264.344 km (20 soliton periods) over a nonlinear regime at θ≠45°. The physical effect responsible for this type of behavior is the cross-phase modulation (XPM) between the two polarization components.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,