Article ID Journal Published Year Pages File Type
851202 Optik - International Journal for Light and Electron Optics 2011 8 Pages PDF
Abstract

We discuss the wavelet transform profilometry based on the continuous wavelet transform technique as viewed from frequency analysis. We deduce the expression of one-dimensional (1-D) and two-dimensional (2-D) wavelet transform in frequency domain and analyze their characteristics in the application of demodulating the fringe patterns. We also compare 1-D CWT and 2-D CWT in demodulating the oblique fringe patterns with dual carrier frequency components. When oblique fringe patterns are processed, the direction normal to the grating line and x axis or y axis is not identical. By 1-D CWT, in which wavelet transform is carried out row by row, we cannot obtain the most similarity between local signal and the wavelet functions with different dilation values. While a fan 2-D continuous wavelet transformation can deal with the fringe pattern as a 2-D unit as well as has multi-directions, its advantage is that it can be used to exact the information in the spatial direction. However, its spatial localization ability is not very good, which leads that it is not suitable for demodulating the fringe patterns with high phase variation. Computer simulations and experiments have verified our analysis.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,