Article ID Journal Published Year Pages File Type
852080 Optik - International Journal for Light and Electron Optics 2011 4 Pages PDF
Abstract

The generalized cylindrical vector beam is just a linear combination of radial and azimuthal polarization. For radially polarized light in the focal plane, there are two electric field components, the radial component and z-component whose magnitude increase with the increase of numerical aperture. By contrast, for azimuthally polarized light in the focal plane, there is only one electrical field component in the azimuthal polarization, it is easy to understand the difference between the two polarization effects. In this paper, we demonstrate how this phenomenon can be harnessed to make a properly selected polarization component to achieve high focal depth in high numerical aperture systems. Numerical simulations show that the evolution of the focal shape is very considerable by changing polarization rotation angle of the generalized cylindrical vector beam. And some interesting focal spots and focal split may occur. And if the ratio of radial and azimuthal polarization is set properly by changing the polarization rotation angle, a largest focal depth is achieved. The tunable range of the focal depth is very considerable. The ratio of radial and azimuthal polarization is different in different NA optical system for obtaining the largest focal depth. We will denote a technique of polarization-assisted high focal depth in high numerical aperture systems.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,