Article ID Journal Published Year Pages File Type
852111 Optik - International Journal for Light and Electron Optics 2011 6 Pages PDF
Abstract

Focal shift in radially polarized hollow Gaussian beam (HGB) with radial wavefront distribution is investigated theoretically. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that the intensity distribution in focal region of the radially polarized HGB can be adjusted considerably by the beam order of HGB n and cosine parameter C that indicates the phase change degree. On increasing C, focus can shift along optical axis and focal pattern changes remarkably. Focus may move in different direction under different condition. Focal shift distance fluctuates on increasing C, and fluctuation amplitude also increases simultaneously. In addition, threshold value of C for focal shift from one side to the other side of the paraxial focal plane differs for different n.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , ,