Article ID Journal Published Year Pages File Type
8523176 Antiviral Research 2018 34 Pages PDF
Abstract
Hepatitis A virus (HAV) infection remains a major cause of acute hepatitis worldwide and even leads to fulminant hepatitis. For screening antivirals against HAV in vitro, we develop a cell-based fluorescent reporter system named Huh-7.5.1-GA, in which HAV infection is visualized by green fluorescence protein (GFP) translocation from the cytosol into the nucleus. The reliability of Huh-7.5.1-GA for antiviral studies is validated by IFN-α, a known inhibitor of HAV replication, which impedes GFP translocation. Utilizing this in-vitro reporter system, we find that sofosbuvir, an FDA approved prodrug for the treatment of chronic hepatitis C, disturbs GFP translocation and inhibits HAV replication efficiently. In addition, we find that inhibition of HAV by sofosbuvir is hepatic-cell dependent, with IC50 (half-maximal inhibitory concentration) being 6.3 μM and 9.9 μM in Huh-7.5.1, quantified separately by RT-qPCR and image-based analysis. Therefore, our reporter system may serve as a high-throughput platform for screening potent antivirals against HAV. Sofosbuvir may be considered for treatment of hepatitis A, especially in re-infected patients who undergo liver transplantation due to HAV-induced liver failure.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , ,