Article ID Journal Published Year Pages File Type
852395 Optik - International Journal for Light and Electron Optics 2010 8 Pages PDF
Abstract

We propose a new method for image encryption using improper Hartley transform and chaos theory. Improper Hartley transform is a Hartley transform in which the phase between the two Fourier transforms is a fractional multiple of π/2. This fractional order is called fractional parameter and serves as a key in the image encryption and decryption process. Four types of chaos functions have been used. These functions are the logistic map, the tent map, the Kaplan–Yorke map and the Ikeda map. Random intensity masks have been generated using these chaotic functions and are called chaotic random intensity masks. The image is encrypted by using improper Hartley transform and two chaotic random intensity masks. The mean square error has been calculated. The robustness of the proposed technique in terms of blind decryption has been tested. The computer simulations are presented to verify the validity of the proposed technique.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,