Article ID Journal Published Year Pages File Type
852443 Optik - International Journal for Light and Electron Optics 2009 7 Pages PDF
Abstract

In the present paper, we describe the encryption and decryption of two-dimensional images. The encryption is done by employing a sandwich phase diffuser made by using two elongated speckle patterns, and placed in the Fourier plane of a double random phase encoding system. After encryption, the two constituent phase diffusers of such a sandwich diffuser are separated. During decryption, if the conjugate of either of the two elongated phase speckle patterns is used, the image cannot be retrieved. Correct decryption is also not possible if a sandwich diffuser with any of the phase speckle patterns is shifted in position with respect to the other. For decryption, the encrypted image is Fourier transformed and multiplied by the conjugate of the sandwich diffuser, and then the product is further Fourier transformed. It is possible to generate the image only if both the elongated phase speckle patterns are matched point-to-point and then the proper conjugate is made. The use of elongated speckle patterns in constituting a sandwich phase diffuser makes the system less complicated as compared to the use of a sandwich diffuser made with normal speckle patterns, enabling an easy alignment of the random phase diffuser at the time of rejoining the constituent diffusers for making the right key. The ease of alignment is due to the reduction of the requirement of 360° scanning at the time of rejoining these diffusers with little reduction in the security of the system. Simulation results are presented in support of the proposed idea. For optical implementation, the decrypted image may be obtained by generating a phase conjugate wave by the phase conjugation technique, and passing through the same sandwich phase diffuser. To evaluate the reliability of the technique, mean square error (MSE) between the decrypted and original image has been calculated.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,