Article ID Journal Published Year Pages File Type
8529446 European Journal of Pharmacology 2018 9 Pages PDF
Abstract
H2S has excitatory and inhibitory effects on Ca2+ signals via transient receptor potential ankyrin 1 (TRPA1) and ATP-sensitive K+ channels, respectively. H2S converts intracellularly to polysulfides, which are more potent agonists for TRPA1 than H2S. Under inflammatory conditions, changes in the expression and activity of these H2S target channels and/or the conversion of H2S to polysulfides may modulate H2S effects. Effects of proinflammatory cytokines on H2S-induced Ca2+ signals and polysulfide production in RIN14B cells were examined using fluorescence imaging with fura-2 and SSP4, respectively. Na2S, a H2S donor, induced 1) the inhibition of spontaneous Ca2+ signals, 2) inhibition followed by [Ca2+]i increase, and 3) rapid [Ca2+]i increase without inhibition in 50% (23/46), 22% (10/46), and 17% (8/46) of cells tested, respectively. IL-1β augmented H2S-induced [Ca2+]i increases, which were inhibited by TRPA1 and voltage-dependent L-type Ca2+ channel blockers. However, IL-1β treatment did not affect [Ca2+]i increases evoked by a TRPA1 agonist or high concentration of KCl. Na2S increased intracellular polysulfide levels, which were enhanced by IL-1β treatment. A NOS inhibitor suppressed the increased polysulfide production and [Ca2+]i increase in IL-1β-treated cells. These results suggest that IL-1β augments H2S-induced [Ca2+]i increases via the conversion of H2S to polysulfides through NO synthesis, but not via changes in the activity and expression of target channels. Polysulfides may play an important role in the effects of H2S during inflammation.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , ,