Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8530089 | European Journal of Pharmacology | 2016 | 36 Pages |
Abstract
Platinum-based chemotherapeutic regimen induces vascular dysfunction. Action of cisplatin on endothelial cells is mediated by protein kinase C (PKC-α), which further activates nuclear factor-κB (NF-κB) and induces canonical transient receptor potential channel (TRPC1) and intercellular adhesion molecule (ICAM-1) expression. Increased ICAM-1 contributes to hyperadhesion of monocytes and endothelial dysfunction. PKC-α is also involved in phosphorylation of TRPC1, resulting in store-operated calcium entry (SOCE) and further activation of NF-κB. Although the role of altered intracellular zinc status is not known in cisplatin-induced vascular dysfunction, because of the ability of zinc to modulate PKC-α, NF-κB activity, we hypothesized that zinc can ameliorate the extent of endothelial dysfunction induced by cisplatin. Human umbilical vein endothelial cells treated with cisplatin (8.0 μg/ml) showed lowered intracellular free zinc, concomitant with enhanced activation of PKC-α, NF-κΠactivation, TRPC1, SOCE and ICAM-1 levels. Zinc deficiency per se induced using membrane permeable chelator (TPEN) mimicked the cisplatin-induced PKC-α, NF-κB activation and ICAM-1 expression, but also activated Activator Protein-1 (AP-1). Zinc supplementation (2.0-10.0 μM) to the endothelial cells during cisplatin treatment or TPEN-induced zinc deficiency suppressed PKC-α, NF-κB, TRPC1, SOCE activation and lowered the ICAM-1 expression. Zinc supplementation thereby effectively decreased the cisplatin-induced endothelial permeability and adherence of the activated endothelial cells to U937 monocytes.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Vijaya Lakshmi Bodiga, Santhi Priya Inapurapu, Praveen Kumar Vemuri, Madhukar Rao Kudle, Sreedhar Bodiga,