Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8538348 | Toxicology and Applied Pharmacology | 2018 | 28 Pages |
Abstract
Diabetic cardiomyopathy is a cascade of complex events leading to eventual heart failure in diabetes. JQ1, one of Bromodomain and extra-terminal domain (BET) protein inhibitors, has exerted therapeutic effects on cancer proliferation, inflammation and cardiovascular disease. Recently, JQ1 was reported to protect mice from bleomycin-induced lung fibrosis and reverse the fibrotic response in carbon tetrachloride-induced liver fibrosis. However, its role in diabetic cardiomyopathy remains to be clarified. Our results indicated that JQ1 treatment suppressed cardiac fibrosis and improved cardiac function in a STZ-induced diabetic mouse model. We further used both cardiofibroblasts and cardiomyocytes in vitro to investigate the protective mechanism of JQ1. JQ1 significantly suppressed hyperglycemia-induced cardiofibroblasts proliferation and migration, myofibroblast differentiation, and collagen production. Moreover, JQ1 reduced hyperglycemia-induced apoptosis of cardiomyocytes in vitro and in vivo. Mechanistically, JQ1 treatment could reverse the expression of Caveolin-1, which modulates transforming growth factor-β1 (TGF-β1) signaling in cardiofibroblasts and inhibits cardiomyocytes apoptosis. Our findings identify BET inhibitor JQ1 as promising agent for diabetic cardiomyopathy.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Miao Guo, Hong-Xia Wang, Wen-Jun Chen,