Article ID Journal Published Year Pages File Type
8550090 NeuroToxicology 2018 34 Pages PDF
Abstract
A recent study from our laboratory demonstrated that binge methamphetamine induced hippocampal cell damage (i.e., impaired cell genesis) in rats when administered specifically during late adolescence (postnatal day, PND 54-57) and evaluated 24 h later (PND 58). The results also suggested a possible role for brain-derived neurotrophic factor (BDNF) regulating cell genesis and survival. This subsequent study evaluated whether these effects persisted in time as measured following prolonged withdrawal. Male Sprague-Dawley rats were treated (i.p.) with BrdU (2 × 50 mg/kg, 3 days, PND 48-50) followed by a binge paradigm (3 pulses/day, every 3 h, 4 days, PND 54-57) of methamphetamine (5 mg/kg, n = 14, M) or saline (0.9% NaCl, 1 ml/kg, n = 12, C). Following 34 days of forced withdrawal (PND 91), rats were killed 45 min after a challenge dose of saline (Sal: C-Sal, n = 6; M-Sal, n = 7) or methamphetamine (Meth: C-Meth, n = 6; M-Meth, n = 7). Neurogenesis markers (Ki-67: cell proliferation; NeuroD: early neuronal survival; BrdU: prolonged cell survival, 41-43 days old cells) were evaluated by immunohistochemistry while neuroplasticity markers (BDNF and Fos forms) were evaluated by Western blot. The main results showed that a history of methamphetamine administration (PND 54-57) induced enduring hippocampal cell damage (i.e., observed on PND 91) by decreasing cell survival (BrdU + cells) and mature-BDNF (m-BDNF) protein content, associated with neuronal survival, growth and differentiation. Interestingly, m-BDNF regulation paralleled hippocampal c-Fos protein content, indicating decreased neuronal activity, and thus reinforcing the persisting negative effects induced by methamphetamine in rat hippocampus following prolonged withdrawal.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , ,