Article ID Journal Published Year Pages File Type
8551773 Regulatory Toxicology and Pharmacology 2018 13 Pages PDF
Abstract
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , ,