Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8552836 | Toxicology | 2018 | 9 Pages |
Abstract
Nickel ions (Ni2+) eluted from biomedical devices cause inflammation and Ni allergy. Although Ni2+ and Co2+ elicit common effects, Ni2+ induces a generally stronger inflammatory reaction. However, the molecular mechanism by which Ni2+ and Co2+ induce such different responses remains to be elucidated. In the present study, we compared the effects of Ni2+ and Co2+ on the expression of interleukin (IL)-8 in human monocyte THP-1 cells. We report that NiCl2 but not CoCl2 induced the expression of IL-8; in contrast, CoCl2 elicited a higher expression of hypoxia-inducible factor-1α (HIF-1α). The NiCl2-induced expression of IL-8 in late phase was blocked by a HIF-1α inhibitor, PX-478, indicating that NiCl2 targets additional factors responsible for activating HIF-1α. To identify such targets, proteins that bound preferentially to Ni-NTA beads were analyzed by LC/MS/MS. The analysis yielded heat shock protein 90β (HSP90β) as a possible candidate. Furthermore, Ni2+ reduced the interaction of HSP90β with HIF-1α, and instead promoted the interaction between HIF-1α and HIF-1β, as well as the nuclear localization of HIF-1α. Using various deletion variants, we showed that Ni2+ could bind to the linker domain on HSP90β. These results suggest that HSP90β plays important roles in Ni2+-induced production of IL-8 and could be a potential target for the regulation of Ni2+-induced inflammation.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Sanki Asakawa, Ryo Onodera, Koji Kasai, Yu Kishimoto, Taiki Sato, Ryosuke Segawa, Natsumi Mizuno, Kouetsu Ogasawara, Takahiro Moriya, Masahiro Hiratsuka, Noriyasu Hirasawa,