Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8554004 | Toxicology in Vitro | 2018 | 31 Pages |
Abstract
In vitro micromass culture systems have been proposed as an alternative method for developmental toxicity assessment to reduce the need for resource-intensive in vivo toxicity testing. In this study, a three-dimensional in vitro embryonic mouse midbrain culture system is characterized in two mouse strains to facilitate gene x environment considerations. Gestational day (GD) 11 C57BL/6 or GD 12 A/J mouse midbrain cells were isolated and cultured in high-density micromass format for 22 days in vitro (DIV). Hematoxylin intensity and protein content revealed that neuronal differentiation increases linearly over time in both C57BL/6 and A/J cultures. Protein expression showed time-dependent proliferation markers (PCNA) increased significantly between DIV 4-6 compared to DIV 1. Early and late differentiation markers (e.g. β-tubulin III and NMDAÉ1) were expressed between DIV 6-8 and DIV 8-15, respectively. Immunohistochemistry and protein expression results for proliferation and differentiation markers were concordant. Protein expression patterns for the two mouse strain micromass systems were similar. This study characterizes a novel method for investigating early neurogenesis and may be used to characterize neurodevelopmental toxicity in vitro. Our findings show how the use of different mouse strains in neurodevelopmental studies may extend test systems for gene and environment interaction studies.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Julie Juyoung Park, Brittany A. Weldon, Sungwoo Hong, Tomomi Workman, William C. Griffith, Julie H. Park, Elaine M. Faustman,