Article ID Journal Published Year Pages File Type
856477 Procedia Engineering 2015 7 Pages PDF
Abstract

Single and multi-phase numerical simulations are carried out to investigate the heat transfer and entropy generation behaviour of transitional flow of TiO2H2O nanofluid in a circular pipe. Results reveal that the small diameter of nanoparticles has the highest heat transfer rate for χ = 6% and the TiO2-water nanofluid shows higher heat transfer rate using multi-phase model compared to that of the single phase model. Also no optimal Reynolds has been observed which could minimise the total entropy generation. New correlations are proposed to calculate the average Nusselt number using a nonlinear regression analysis with a standard deviation of error of less than 0.5%.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)