Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
858714 | Procedia Engineering | 2013 | 9 Pages |
Abstract
Numerical simulation of the flow fields was performed for the mission of Apollo AS-202 to investigate the influence of the laminar-turbulent transition position in the boundary layer around a reentry capsule on the heat flux at the wall. For this purpose, we intentionally varied the laminar-turbulent transition position and the obtained results were compared. According to the simulation result, in the turbulent case, heat flux value is about 1.4 times at maximum compared with the laminar case. It turned out that the transition position had a large influence on the heat flux at the wall, particularly in the forebody region. On the other hand, in the afterbody region, some discrepancies were seen compared with the flight data.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)