Article ID Journal Published Year Pages File Type
859076 Procedia Engineering 2013 10 Pages PDF
Abstract

The aim of this paper is to give a better understanding of damage mechanisms that control lifetime of austenitic stainless steel nuclear components under cyclic loading. The acoustic emission signals were analyzed, in order to identify the acoustic signatures corresponding to a specific damage mode. An unsupervised classification method allows differentiating signals resulting from the plastic deformation or fatigue crack growth. Both phenomena are the two main sources of acoustic emissions in isotropic materials. The main results are the classification of acoustic signals by multivariate statistical methods in different classes. A relation can be established between each class and the present deformation mechanisms and damage, and their order of appearance according to the loading amplitude.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)