Article ID Journal Published Year Pages File Type
859925 Procedia Engineering 2013 6 Pages PDF
Abstract

The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, at- tempts at performing direct numerical simulations (DNS) are limited to relatively low-Reynolds numbers. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grain simulations. Eddy-viscosity models for Large-Eddy Sim- ulation (LES) is an example thereof: they rely on differential operators that should be able to capture well different flow config- urations (laminar and 2D flows, near-wall behavior, transitional regime...). In the present work, several differential operators are derived from the criterion that vortex-stretching mechanism must stop at the smallest grid scale. Moreover, since the discretization errors may play an important role a novel approach to discretize the viscous term with spatially varying eddy-viscosity is used. It is based on basic operators; therefore, the implementation is straightforward even for staggered formulations. The performance of the proposed models will be assessed by means of direct comparison to DNS reference results.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)