Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
859928 | Procedia Engineering | 2013 | 6 Pages |
The Volume-of-Fluid (VOF) is one of the most widely used methods for interface tracking in the simulation of multi-fluid flows. The interface between different fluids is generated from the volume fraction scalar fields, which account for the ratio of volume of each fluid in each control volume. Then, an advection equation is solved to obtain the new distribution of the fluids after momentum is applied. Since this is a time-consuming process, parallelization techniques play an essential role. In the VOF approaches most of computing cost of the algorithm is concentrated in operations with the cells that form the interface, i.e. the cells in which coexist different fluids. When the interface is not homogeneously distributed throughout the domain, the standard domain decomposition strategy results in an unbalanced partition. A possible strategy to overcome this limitation is to adapt the domain decomposition to the interface distribution, however, this approach presents a number of drawbacks mainly related to the dynamic location of the interface. In this paper a new strategy, based in a load balancing process complementary to the domain decomposition, is presented with the aim to overcome the limitations of standard domain decomposition based approaches