Article ID Journal Published Year Pages File Type
861158 Procedia Engineering 2012 7 Pages PDF
Abstract

A stable walking motion requires effective gait balancing and robust posture correction algorithms. However, to develop and implement such intelligent motion algorithms remain a challenging task for researchers. In order to minimize the modeling errors and disturbances, this paper presents an alternative approach in generating a stable Centre-of-Mass (CoM) trajectory by applying augmented model predictive control. The propose approach is to apply Augmented Model Predictive Control (AMPC) algorithm with on-line time shift and look ahead to process future data to optimize a control signal by minimizing a cost function so that the system is able to track the reference Zero Moment Point (ZMP) as close as possible, and at the same time to limit the motion jerk in order to improve the robot walking stability.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)