Article ID Journal Published Year Pages File Type
862422 Procedia Engineering 2012 6 Pages PDF
Abstract

The major challenge for dental implants is achieving an optimal osteoregeneration. Different levels of roughness processed through sand-blasting/ acid-etching (SLA) then further treated with silane and peptide were measured. Peptide bonded with silane on the SLA and machine ground titanium (Ti) surface were used as a culture substitute. The sample properties on the osteogenic abilities were compared by testing the interaction with mesenchymal stem cells (MSCs, D1). When comparing to the SLA only group, the silane treated Ti surface with peptide bonded had smaller wetting angle and the cell proliferative ability did differ with statistical significance (p<0.05). A rougher surface binding with peptide provided higher hydrophilic ability and had the potential ability to enhance the proliferation and mineralization of the progenitor cell D1. Accordingly, a novel implant surface treatment method having tissues integrated was obtained through the supplement of peptide on the surfaces through SLA treatment of titanium.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)