Article ID Journal Published Year Pages File Type
8626144 International Journal of Developmental Neuroscience 2018 20 Pages PDF
Abstract
Novel therapeutic interventions for obesity and comorbid conditions require knowledge of the molecular elements playing a role in the development of obesity. Chronic low-grade inflammation has been consistently reported in obese individuals. In this study, we first determined whether key molecular modulators of inflammation, microRNA-155 (miR-155) and microRNA-146a (miR-146a), are regulated by an obesogenic diet within brain regions associated with reward, metabolism and energy balance. C57BL/6J mice were chronically exposed to a high-fat diet (HFD) or a standard chow (CTL). Significant reductions in the levels of miR-155 (82%) and miR-146a (41%) levels were observed within the nucleus accumbens of HFD mice compared to CTL. Further analysis of miR-155 regulation showed no significant changes in levels across peripheral tissue (white adipose, spleen, kidney or liver) between HFD and CTL mice. The effect of lower miR-155 on the development of obesity was determined by exposing wild-type (WT) and miR-155 knockout mice (miR-155 KO) to HFD. Male miR-155 KO gained significantly more weight than WT littermates. Metabolic analyses revealed that miR-155 KO significantly ate more HFD compared to WT, without differing in other metabolic measures including energy expenditure. Together, these data show that miR-155 is physiologically down-regulated after intake of an obesogenic diet, and that loss of miR-155 increases intake of an obesogenic diet. Moreover, these findings shed light on a potential miRNA-based mechanism contributing to the development of diet-induced obesity.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , ,