Article ID Journal Published Year Pages File Type
8626266 Journal of Genetics and Genomics 2018 24 Pages PDF
Abstract
Genetic studies with mouse models have shown that fibroblast growth factor receptor 2-IIIb (FGFR2-IIIb) plays crucial roles in lung development and differentiation. To evaluate the effect of FGFR2-IIIb in pig lung development, we employed somatic cell nuclear transfer (SCNT) technology to generate transgenic pig fetuses overexpressing the transmembrane (dnFGFR2-IIIb-Tm) and soluble (dnFGFR2-IIIb-HFc) forms of the dominant-negative human FGFR2-IIIb driven by the human surfactant protein C (SP-C) promoter, which was specifically expressed in lung epithelia. Eight dnFGFR2-IIIb-Tm transgenic and twelve dnFGFR2-IIIb-HFc transgenic pig fetuses were collected from three and two recipient sows, respectively. Repression of FGFR2-IIIb in lung epithelia resulted in smaller lobes and retardation of alveolarization in both forms of dnFGFR2-IIIb transgenic fetuses. Moreover, the dnFGFR2-IIIb-HFc transgenic ones showed more deterioration in lung development. Our results demonstrate that disruption of FGFR2-IIIb signaling in the epithelium impedes normal branching and alveolarization in pig lungs, which is less severe than the results observed in transgenic mice. The dnFGFR2-IIIb transgenic pig is a good model for the studies of blastocyst complementation as well as the mechanisms of lung development and organogenesis.
Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , , , , , , , , , , , , ,