Article ID Journal Published Year Pages File Type
8631237 General and Comparative Endocrinology 2018 12 Pages PDF
Abstract
Rhodnius prolixus is a blood-gorging insect and a vector for human Chagas disease. The insect transmits the disease following feeding, when it excretes urine and feces contaminated with the Trypanosoma cruzi parasite. A corticotropin-releasing factor-like peptide acts as a diuretic hormone in R. prolixus (Rhopr-CRF/DH); however, its distribution throughout the insect's central nervous system (CNS) and the expression of its receptor in feeding-related tissue as well as the female reproductive system suggests a multifaceted role for the hormone beyond that of diuresis. Here we investigate the involvement of Rhopr-CRF/DH in feeding and reproduction in R. prolixus. Immunohistochemistry of the CNS showed diminished CRF-like staining in neurosecretory cells (NSCs) of the mesothoracic ganglionic mass (MTGM) immediately following feeding, and partial restocking of those same cells two hours later, indicating Rhopr-CRF/DH stores in this regions are involved in feeding. The results of the temporal qPCR analysis were consistent with the immunohistochemical findings, showing an increase in Rhopr-CRF/DH transcript expression in the MTGM immediately after feeding, presumably capturing the restocking of Rhopr-CRF/DH in the lateral NSCs following release of the peptide during feeding. Elevating haemolymph Rhopr-CRF/DH titres by injection of Rhopr-CRF/DH prior to feeding resulted in the intake of a significantly smaller blood meal in 5th instars and adults without an apparent effect on the rate of short-term diuresis. When adult females were injected with Rhopr-CRF/DH, they also produced and laid significantly fewer eggs. Finally, in vitro oviduct contraction assays illustrate that Rhopr-CRF/DH inhibits the amplitude of contractions of the lateral oviducts, highlighting a potential mechanism via which the hormone diminishes reproductive capacity. To conclude, the study of the Rhopr-CRF/DH pathway, its components and mechanisms of action, has implications for vector control by highlighting targets to alter feeding, diuresis, and reproduction of this disease vector.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , ,