Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
864803 | Procedia IUTAM | 2015 | 4 Pages |
Abstract
A brief review is given of numerical simulation results for the evolution of disturbances in a flat oscillatory Stokes layer. A spatially localised form of impulsive forcing is applied to trigger the disturbances. For the linearized case, the disturbance development displays an intriguing family tree-like structure, which involves the birth of successive generations of wavepackets. Although some features of the wavepacket behaviour may be accounted for using a Floquet linear stability analysis, for Fourier modes with prescribed wavenumbers, the discovery of the tree-like structure was completely unexpected. Simulation results were also obtained for nonlinear disturbances, where highly localised spikes were found to develop.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)