Article ID Journal Published Year Pages File Type
8648293 Journal of Structural Biology 2017 11 Pages PDF
Abstract
The structures of the compact and swollen southern bean mosaic virus (SBMV) particles have been compared by X-ray diffraction and proton magnetic resonance (PMR). Small-angle X-ray scattering showed that removal of divalent cations at alkaline pH causes the particle diameter to increase from 289 Å in the native SBMV by 12% in solution and by 9% in microcrystals. The swelling is fully reversible upon re-addition of Ca2+ and Mg2+ ions, as shown by the X-ray patterns at 6 Å resolution and by the 270 MHz PMR spectra. Beyond 30 Å resolution, X-ray patterns from the compact SBMV in solution and in microcrystals show fine fringes of ∼1/225 Å−1 width extending to 6 Å resolution, whereas patterns from the swollen SBMV in solution and in microcrystals show only broader fringes of ∼1/90 Å−1 width, Model calculations demonstrate that the fine fringes from compact SBMV arise from regular packing of the protein subunits on the icosahedral surface lattice; the smearing of fine fringes in the swollen virus pattern can be simulated by uncorrelated displacements of pentamers and hexamers of protein subunits, with a standard deviation of 6 Å from their mean locations. The PMR spectrum of compact SBMV is poorly resolved, whereas PMR spectrum of swollen SBMV shows sharp resonances in the methyl proton region. The line-narrowing for a fraction of the aliphatic protons upon swelling cannot be accounted for by rotational relaxation of the particle of 6 × 106 MW, but must be attributed to internal motion in small regions of the protein subunits.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , ,